Equalizer Design Introduction
Hello,

Please find enclosed the class for the parametric equalizer. This class can be used to create parametric equalizer objects of which you can create as many as you would like for your EQ. For example, if you make a 10 Band EQ you would want to instance 10 EQ objects. Each EQ will either boost, cut, or do nothing to the sound depending on what ‘gain’ values you pass it.

Using the code
First, include the class

#include “Equalizer.h”

Create an Equalizer object

Equalizer eq;
Calculate the coefficients for the Equalizer object. The following example would result in an eq with a centre frequency of 1000Hz, a width of 1000Hz, and some value for gain (see Utility functions), and operating at a sample rate of 44100Hz. Note that if you make an EQ with a band at, for example, 16000 Hz, then it would cause the filter to become unstable if you pass in a width greater than 6050 as this goes above half the sampling rate i.e. 22050. You should bear this in mind when you choose your bands.
eq.CalcCoeffs(1000, 1000, 44100, gain);
Pass a stereo signal (xL, xR) to the eq to be filtered. The result will be placed in yL and yR. The current code uses double precision, you could change this to float if you like.

eq.Filter(xL, xR, &yL, &yR);
A 3 Band EQ example
You need to create an eq for each band and pass the signal from one eq to the next. Here will we demo a 3 band.
Equalizer eq1;

Equalizer eq2;

Equalizer eq3;

float fs = 44100 // or whatever samplerate you use

// gain1,2,3 are the gains in dB of your filter (-12 to 12 (in dB) is good)
eq1.CalcCoeffs(20, 20, fs, gain1);

eq2.CalcCoeffs(31, 31, fs, gain2);

eq3.CalcCoeffs(63, 63, fs, gain3);
// Fetch a stereo signal

xL = inputLeft;

xR = inputRight;

// Pass the stereo input

eq1.Filter(xL, xR, yL, yR);

// Pass the output from the previous filter

eq2.Filter(yL, yR, yL, yR);

eq3.Filter(yL, yR, yL, yR);

outputLeft = yL;

outputRight = yR;

Utility Functions

// Calculate frequency from 20Hz to 20,000 Hz, a value of 0 to 1 should be passed (as is normally used in linear controls)
float CalcFreq(float f) { return (pow(1000.0f,f)*20); }

// Calculate Gain value, which is passed when you CalcCoeffs(), a value from 0 to 1 should be passed, this will result in a -12 to 12 dB cut \ boost. i.e. 0 = -12dB, 0.5 = 0dB, 1 = 12dB
float EQ::CalcGain(float val)

{

float dB = 12.0f * ((2.0f * val) - 1.0f);


float gain = pow(10.0f, (dB / 20.0f));


return (gain);

}

